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Background Information Model Evaluation Cash Score Results
Access to credit is crucial for financial stability, yet traditional credit scoring models often ex- Key metrics for model evaluation include: « Best Model: Weighted Ensemble
clude individuals with limited credit history. The "Cash Score” project aims to address this , , ,
issue by utilizing transaction data to evaluate financial behaviors rather than just historical = ROC-AUC: Evaluates the model’s ability to differentiate delinquent users. = Cash Scores better predict definquency than Credit Scores
credit data. Our goal Is to provide a more equitable scoring system that benefits both con- = Precision and Recall: Precision measures correct positives; recall measures detected
sumers and financial institutions. pOSiﬁV@S. Heatmap of Delinquency Probability

We utilized multiple datasets that provide consumer transaction details, account balances, " Prediction Time: Time taken to make predictions.
and delinquency indicators:
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To mitigate the class imbalance (delinquents only accounted for 8.4% of dataset), we used:

= g2-ucsd-consDF.pqt: Contains consumer attributes like consumer id, credit_score,

and DQ_target (delinquency indicator). = SMOTE & SMOTEENN: Oversampling technigues. 651-750

= Feature Normalization: Standardization of key variables.
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= g2-ucsd-acctDF.pgt: Includes account-level data such as consumer id, account id,
balance date, and balance.

= q2-ucsd-trxnDF.pqt: Captures transactional details including category, amount, Synthet|c Minority Ove rsampling Technique
credit or_debit, and posted_date.
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Credit Score Bins
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= categories.csv: Maps transaction categories like Rent, Groceries, and Entertainment.
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dentifod dif . - Additionally, to improve generalization and performance of our best models, we only used D S (T S ) S (e ymmmmme .
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and spending fluctuations. i
n - Allowed 11< to be<t trine hvpoerparameter< to he<t At the data el 2D Voo 28 Voo 2 e ’
+ Estimated income using recurring XGBoost: Allowed us to best tune hyperparameters to best fit the data. p {2 )
. 0.00 : : : : : : : : | | o B — - M . . : : I
transactions. P e S R LightGBM: Light and quick model to train on for the data | FeatureEngineering  Exploratory Data Analysis  Predicting Cash
= Analyzed the impact of account fees, A A A = CatBoost: Model best used for categorical data i Hersacton Sased Fac o e Score
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buy-now-pay-later (BNPL) transactions, = Balanced Random Forest: Best for a dataset that had imbalanced classes | Account Tp
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between them.
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= Balance Features: Negative balance ratio, balance trends, payday effects. 0.8 - e
= Transaction-Based Features: Credit vs. debit transaction volume, category-based
spending breakdown. o = Qur project aims to create a fairer credit assessment system while maintaining accuracy
) . . T 0.6 1 . o e . .
= Temporal Features: Spending frequency over time, account for longevity effects. p and transparency. The Cash $C.ore model reduces reliance on traditional credit history
= and promotes financial inclusivity.
= Account Types: Features based on the types of accounts a consumer has 2 . . . .
% 04 = Our model demonstrates the potential for alternative credit scoring methods but faces
High = challenges such as data bias and class imbalance. Future work will focus on refining the
sccount type SAVINGS - R fairness and interpretability of the Cash Score.
balance M . 0.2 7 ‘.'I 7 — XGBoost (AUC = 0.823)
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o o o o o T * Integrate Q1 Project: Leverage our categorization model to create a category column,
False Positive Rate enabling additional feature generation for the Cash Score model. The model categorizes
transactions based on the memos column in our Q1 dataset.

Feature value

INVESTMENT _INCOME _std -—--’- = Expand Dataset: Train and test a full-size dataset
SELF TRANSFER iqr Model ROC-AUC |Accuracy | Precision| Recall |F1-Score| Training | Prediction
ATM_CASH_mediar t [ightGBM 0.8221 | 09031 0.8739 09031 0.8814 | 2.5050 0.000019
o T - Weighted Ensemble| 0.8301 | 0.9006 | 0.8728 [0.9006 0.8813 | 0.0010 '0.000001 References
_éaﬂp ”;I?'jz “mpgft on mgze' c’“t’;'."ﬂt] XGBoost 0.8232 0.8¥62 | 0.86// |0.8Y62] 0.87/38 | 20606 |0.000000 [1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and lllia Polosukhin
CatBoost 0.8212 0.8892 0.8707 10.8892 0.8/85 3.0342 1 0.000004 Attention is all x;ou need. In . G,uyon, U. \/on’ Luxburg, S. Benéio, H. \/\/allac,h, R. Feréus, S. \/iéhv\/anathan, an,d R. Garnett, editors;
Figure 2. Feature Importance using Shap Values Balanced RF 0.8144 0.8982 | 0.8/03 [0.8982| 0.8/9/7 [26.2355 0.000064 Advances in Neural Information Processing Systems, volume 30, 2017. URL https://proceedings.neurips.cc/paper_files/

paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper. pdf.
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